Kähler Cone Substructure

نویسنده

  • Eric Sharpe
چکیده

To define a consistent perturbative geometric heterotic compactification the bundle is required to satisfy a subtle constraint known as “stability,” which depends upon the Kähler form. This dependence upon the Kähler form is highly nontrivial – the Kähler cone splits into subcones, with a distinct moduli space of bundles in each subcone – and has long been overlooked by physicists. In this article we describe this behavior and its physical manifestation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The General Definition of the Complex Monge-Ampère Operator on Compact Kähler Manifolds

We introduce a wide subclass F(X,ω) of quasi-plurisubharmonic functions in a compact Kähler manifold, on which the complex Monge-Ampère operator is well-defined and the convergence theorem is valid. We also prove that F(X,ω) is a convex cone and includes all quasi-plurisubharmonic functions which are in the Cegrell class.

متن کامل

Gauging Isometries on Hyperkähler Cones and Quaternion-Kähler Manifolds

We extend our previous results on the relation between quaternion-Kähler manifolds and hyperkähler cones and we describe how isometries, moment maps and scalar potentials descend from the cone to the quaternion-Kähler space. As an example of the general construction, we discuss the gauging and the corresponding scalar potential of hypermultiplets with the unitary Wolf spaces as target spaces. T...

متن کامل

Numerical Solutions of Kähler–Einstein Metrics on P2 with Conical Singularities along a Smooth Quadric Curve

We solve for the SO(3)-invariant Kähler–Einstein metric on P2 with cone singularities along a smooth quadric curve using a numerical approach. The numerical results show the sharp range of angles ((π/2, 2π ]) for the solvability of equations, and the correct limit metric space (P(1, 1, 4)). These results exactly match our theoretical conclusion. We also point out the cause of incomplete classif...

متن کامل

Kähler-sasaki Geometry of Toric Symplectic Cones in Action-angle Coordinates

In the same way that a contact manifold determines and is determined by a symplectic cone, a Sasaki manifold determines and is determined by a suitable Kähler cone. KählerSasaki geometry is the geometry of these cones. This paper presents a symplectic action-angle coordinates approach to toric Kähler geometry and how it was recently generalized, by Burns-Guillemin-Lerman and Martelli-Sparks-Yau...

متن کامل

Causes of Catastrophic Failure of High Mn Steel Utilized as Crusher Overlaying Shields (TECHNICAL NOTE)

The secondary cone crusher's shields at Sarcheshmeh Copper Complex of Iran are made of Hadfield steel with a nominal composition of Fe-1.3 % C-12 % Mn. They have a cut-off in the shape of a cone with an upper end diameter of 80cm and an approximate lower end diameter of 200 cm whose main problem is an unexpected early failure under normal working condition. In this paper, the results of metallo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998